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Introduction  
Connected sensors, devices, and intelligent operations can transform businesses 

and enable new growth opportunities with a comprehensive set of Microsoft 

Azure Internet of Things (IoT) services.  

This document outlines the core reference architecture for IoT solutions built on 

the Microsoft Azure platform that enables your organization to connect, store, 

analyze, and operationalize device data to provide deep insights from your line of 

business assets. This architecture describes terminology, technology principles, 

common configuration environments, and composition of Azure IoT services. 

 

The goal of this document is to provide perspective and guidance to 

Microsoft customers and partners who are delivering IoT solutions using 

Azure services.  
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1. Reference architecture overview 
This reference architecture provides guidance for building secure and scalable, device-centric solutions for connecting 

devices, conducting analysis, and integrating with backend systems. While these solutions may be built on public, private, 

and hybrid Azure cloud components, the core guidance is focused on public cloud implementations. The concepts of this 

architecture are also generally applicable to private cloud implementations, at lower scale and with increased deployment 

and management efforts. 

The goal of this architecture is to enable the flow of information between intermittent or continuously connected devices 

and line-of-business assets (that is, not general-purpose devices such as personal PCs, smartphones, or tablets) and cloud-

based backend systems for the purpose of analysis, control, and business process integration. The solution architecture is 

specifically designed for large-scale IoT environments with devices from industrial serial production with tens of thousands 

of units, and/or industrial machinery emitting significant amounts of data. The model is suitable for so-called “maker” and 

hobbyist scenarios where small numbers of special-built devices are operated, but may be costlier than a solution 

equivalent to running a single website. 

The architecture aims to be neutral with regard to particular industries and use-case scenarios and also neutral toward 

particular approaches for modeling state, metadata, and behavior of devices. However, while the architecture is abstract, 

the assumption is that realizations of the architecture in particular solutions will be very concrete and aligned with 

particular industry standards or domain specific designs.  

The reference architecture provides flexibility for composability and extensibility to allow for a variety of technology 

choices driven by the specific solution requirements. The document first introduces foundational principles for the 

architecture, then presents the conceptual model and components of the architecture, which can be implemented using 

Azure or third-party services. The remaining sections provide more details about the individual components, design 

considerations, and technology trade-offs. 

Figure 1 shows the high-level conceptual architecture. The architecture is composed of core platform services and 

application-level components to facilitate the processing needs across three major areas of a typical IoT solution: 

 Device connectivity  

 Data processing, analytics, and management 

 Presentation and business connectivity 
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Figure 1 IoT solution architecture 

 

Devices can be connected directly or indirectly via a gateway, and both may implement edge intelligence with different 

levels of processing capabilities. A cloud gateway provides endpoints for device connectivity and facilitates bidirectional 

communication with the backend system.  

The back end comprises multiple components to provide device registration and discovery, data collection, 

transformation, and analytics, as well as business logic and visualizations.  

The business integration and presentation layer is responsible for the integration of the IoT environment into the business 

processes of an enterprise. The IoT solution ties into existing line-of-business applications and standard software solutions 

through adapters or Enterprise Application Integration (EAI) and business-to-business (B2B) gateway capabilities. End 

users in business-to-business or business-to-consumer scenarios will interact with the IoT solution and the special-

purpose IoT devices through this layer. They may use the IoT solution or line-of-business system UIs, including apps on 

personal mobile devices, such as smartphones and tablets. 

Microsoft provides core platform capabilities, Azure IoT services, and IoT solution components as well as preconfigured 

solutions that offer a default composition of those elements for common IoT scenarios.  

2. Foundational principles and concepts 

2.1. Architecture guiding principles 
The reference architecture provides a degree of component commonality that allows assembling secure, complex 

solutions supporting extreme scale, and yet allowing for maximum flexibility with regard to possible solution scenarios. 

This motivates the following guiding principles across the different areas of the architecture. 

Heterogeneity. The proposed reference model must accommodate for a vast variety of scenarios, environments, devices, 

processing patterns, and standards. It should be able to handle vast hardware and software heterogeneity. 
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Security. Because IoT solutions represent a powerful connection between the digital and physical worlds, building secure 

systems is a necessary foundation for building safe systems. This reference model contemplates security and privacy 

measures across all areas, including device and user identity, authentication and authorization, data protection for data at 

rest and data in motion, as well as strategies for data attestation. 

Hyper-scale deployments. The proposed architecture should support millions of connected devices. It should allow 

proof-of-concepts and pilot projects that start with a small number of devices to be scaled-out to hyper-scale dimensions. 

Flexibility. The heterogeneous needs of the IoT market necessitate open-ended composition of various services and 

components. The reference model is built upon a principle of composability to allow for a number of extension points and 

to enable the usage of various first-party or third-party technologies for the individual conceptual components. A high-

scale, event-driven architecture with brokered communication is the backbone for a loosely coupled composition of 

services and processing modules. 

2.2. Data concepts 
Understanding of data concepts is a critical first step to building device-centric data collection, analysis, and control 

systems. The role of devices, data models, data streams, and encoding are detailed in the following sections.  

2.2.1. Device and data models 
Models often describe the schema for the descriptive metadata about the device, like its model and serial number, data 

schemas for data emitted by the device, and schemas for configuration parameters controlling device behaviors, as well 

operations and parameters for the control actions a device can execute, or what events it can observe. 

There are many different device modeling efforts underway across different industries, and this reference architecture 

takes a largely neutral stance in order to support many of these ongoing modeling and schematization efforts. 

For example, in the case of an industrial automation scenario, the data semantics and structure may be based on the OPC 

Foundation’s information modeling framework.1 Take note that other implementations such as home automation and 

automotive applications may use entirely different industry-specific modeling and schema standards. 

The architecture adopts a fundamental abstraction of data streams, where device and data models are not required to 

flow, route, or store information in the core platform components. At the solution layer, structured data will be guarded by 

data models and schema whenever it is produced or consumed by the components. Developers have the option of using 

schemas for device-client development, backend analytics, or specific processing logic as required by the solution. 

2.2.2. Data streams  
The IoT reference architecture adopts a foundational notion of data streams that are composed of data records and 

represent the data flow through the system. Data streams do not have any prescribed format for the content of records 

because any structure will depend on the kind of data that is transported. The reference model is strictly neutral regarding 

the structure of the payload and data semantics. It does not prescribe or take any dependency on naming, meaning, or 

types of any data item or structure that is not immediately required for a fundamental platform function (for example, 

uniquely identifying a data record or data stream). 

                                                      

1 https://opcfoundation.org/ 

https://opcfoundation.org/
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Figure 2 shows a logical data flow from a device through the cloud gateway ingestion point and an event stream 

processor to a storage location.  

 

Figure 2 Data flow in the IoT reference architecture 

Device telemetry. Device sensor data consists of digital signals—sequences of point-in-time observations made over a 

defined period that is deemed appropriate for the signal. These signals may require some level of preprocessing on the 

device, in which case the processing result is relevant to the system, not the individual measurements points. It is also 

worth mentioning that preprocessed digital signals may be encoded and transferred in many different types of encoding 

formats, such as MPEG-22 Layer 3 audio encoding or H.264 encoding for video. Sound and light signals are examples of 

sensor data that require onsite analysis in many scenarios. 

State, alerts, and actions. The reference architecture does not prescribe any specific record types for state, alert, or action 

within a data stream. The “state” of a parameter becomes the “last known value”, represented by the last record carrying 

that specific parameter. Devices may send records with all defined parameters for a particular record, or in many cases 

only values that have changed since the last message was sent (especially when devices are optimized for network 

bandwidth). In the latter case, devices might send from time to time a full snapshot of all parameters (also called a key 

frame) in between differential records for synchronization purposes.  

An “alert” is a processing rule triggered by an event record matching certain conditions. An “action” is an operation 

initiated in response to the receipt of an event record with particular criteria. Actions may be defined in various ways 

depending on the scenario. To summarize, data streams composed of records are delivered to Azure from devices. These 

records then either report the state of a device data point, or act as alerts that trigger an action to be taken.  

Timestamps. Any structure will depend on the kind of data that is transported, so there is no prescribed format for the 

content of records. Because there is no common convention on time or timestamps, a specific solution can pick a 

particular model for time expressions. Examples of this are UTC wall-clock time, a vector clock model, epochs in form of 

                                                      

2 http://en.wikipedia.org/wiki/Moving_Picture_Experts_Group  

http://en.wikipedia.org/wiki/Moving_Picture_Experts_Group
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offsets from some solution-chosen reference instant, or some other notion of order that is not immediately related to 

wall-clock. 

Data flow. As data is ingested to Azure, it is important to understand how the route of data processing may vary. 

Intermediate stream processing will consume one shape of data stream, but may transform it and produce a different type 

of output data stream. Also, data streams may terminate and emerge in different parts of the system based on the type of 

data processing that occurs. This intermediate processing may be performed “on the fly” as part of stream processors or 

data pipelines transferring at-rest data. 

If multiple data streams need to flow concurrently, for example representing telemetry for different subcomponents of a 

device, the recommendation is to segregate those by using discriminators in the underlying application protocol for the 

payload frame. An example would be when using the “subject” field in AMQP3 or alternatively an application property of 

the message (for example, “stream-id”). Streams can also be segregated using a convention around a particular payload 

field when using a single structured data encoding. In alignment with the reference architecture, it is possible for a 

candidate convention to be adding an optional field, such as “_subject”, to each payload record. However, note that this 

will require “opening” and deserializing the payload prior to routing. 

The assumption for each data stream is that all its records are of compatible structure and semantics. Data fields with a 

given name in one record must match any other correlating field in the record of the data stream, both in type and 

semantics. However, as mentioned in the previous section the core platform services are payload agnostic and there is no 

requirement at this level for any particular fields to be present in a message. Completeness and compatibility will be the 

responsibility of the solution and device developers. 

Another example is including a version identifier when versioning records, allowing multiple concurrent streams to be 

segregated by version. For example, using a “_version” convention in which the value is a version tag can keep the stream 

together while allowing for differentiation. With a versioning model in place, solution developers can appropriately resolve 

potential conflicts of record fields in terms of semantics or type. 

2.2.3. Device interaction  
The reference model adopts the principles of the Service Assisted Communication4 approach for establishing trustworthy 

bidirectional communication with devices that are potentially deployed in untrusted physical space. The following 

principles apply:  

 Devices do not accept unsolicited network connections. All connections and routes are established in an 

outbound-only fashion.  

 Devices generally only connect to or establish routes to well-known service gateways that they are peered with. In 

case they need to feed information to or receive commands from a multitude of services, devices are peered with 

a gateway that takes care of routing information downstream, and ensures that commands are only accepted 

from authorized parties before routing them to the device.  

 The communication path between device and service or device and gateway is secured at the transport and 

application protocol layers, mutually authenticating the device to the service or gateway and vice versa. Device 

applications do not trust the link-layer network. 

                                                      

3 http://www.amqp.org/  
4 http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx  

http://www.amqp.org/
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
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 System-level authorization and authentication should be based on per-device identities, and access credentials and 

permissions should be near-instantly revocable in case of device abuse. 

 Bidirectional communication for devices that are connected sporadically due to power or connectivity concerns 

may be facilitated through holding commands and notifications to the devices until they connect to pick those up. 

 Application payload data may be separately secured for protected transit through gateways to a particular service. 

Note: A common pattern for informing power-constrained devices of important commands while disconnected is through 

the use of an out-of-band communication channel, such as cellular network protocols and services. For example, an SMS 

message can be used to “wake up” a device and instruct it to establish an outbound network connection to its “home” 

gateway. Once connected, the device will receive the outstanding commands and messages. 

2.2.4. Communication protocols 
There is a very large number of communication protocols available for device scenarios today and the number is rapidly 

growing. Choosing from among those for use with hyper-scale systems in order to ensure secure operations, while 

providing the capabilities and assurances promised by the chosen protocols, requires significant expertise in building out 

distributed systems. Yet, there is a vast number of existing devices for which protocol choices have already been made and 

these devices must be integrated into solutions. 

This reference model discusses preferred communication protocol choices, explains potential trade-offs with these 

choices, and also explicitly allows for custom protocol extensibility and adaptation at the field gateway or in a cloud-based 

protocol gateway. 

Please note that the communication protocol defines how payloads are moved and carries metadata about the payload 

that can be used for dispatching/routing and decoding, but commonly does not define the payload shape or format. For 

example, the communication may be enabled by the AMQP protocol, but the data encoding may be Apache Avro, or 

JSON, or AMQP’s native encoding. 

3. Architecture components  

3.1. Device connectivity 
Devices can be connected directly or indirectly via a field gateway. Both devices and field gateways may implement edge 

intelligence and analytics capabilities. This enables two things: aggregation and reduction of raw telemetry data before 

transport to the back end, and local decision-making capability with rules that run either on the device or on the edge. 

Figure 3 outlines the conceptual representation of the different device connectivity options for IoT solutions. The numbers 

in the figure correspond to four key connectivity patterns, defined as follows: 

1. Direct device connectivity to the cloud gateway: 

For IP capable devices that can establish secure connections via the Internet. 

2. Connectivity via a field gateway: 

For devices using industry specific protocols (such as CoAP5, OPC), short-range communication technologies (such 

as Bluetooth, ZigBee), as well as for resource-constrained devices not capable of hosting a TLS/SSL stack, or 

                                                      

5 http://en.wikipedia.org/wiki/Constrained_Application_Protocol  

http://en.wikipedia.org/wiki/Constrained_Application_Protocol
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devices not exposed to the Internet. This option is also useful when aggregation of streams and data is executed 

on a field gateway before transferring to the cloud. 

3. Connectivity via a custom cloud gateway: 

For devices that require protocol translation or some form of custom processing before reaching the cloud 

gateway communication endpoint.  

4. Connectivity via a field gateway and a custom cloud gateway: 

Similar to the previous pattern, field gateway scenarios might require some protocol adaption or customizations 

on the cloud side and therefore can choose to connect to a custom gateway running in the cloud. Some scenarios 

require integration of field and cloud gateways using isolated network tunnels, either using VPN technology or 

using an application-level relay service. 

 

Figure 3 Conceptual representation of device connectivity 

Note: The use of the term “gateway” (field gateway, custom cloud gateway, and cloud gateway) is 

only to help set context for the conceptual components that can exist at this level. These do not 

represent names of Microsoft products. For example, cloud gateway as shown in Figure 3 is not a 

Microsoft product. It’s a concept that’s realized through Microsoft Azure IoT Hub.  

Direct device-to-device communication enables local network control activities and information flow, or collaborative 

operations where multiple devices perform some sort of coordinated action. Purely local interactions are outside the 

scope of this architecture and covered by industry standards such as AllJoyn, UPnP/DLNA, and others. 
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It is important to understand the terminology and key components used to describe device connectivity of the Azure IoT 

reference architecture. The following sections provide a more detailed description. 

3.1.1. Devices 
Heterogeneous device support. The goal is to enable secure, efficient, and robust communication between nearly any 

kind of device and a cloud gateway. This can be done both directly and through gateways, in order to make it possible to 

implement practical cloud-assisted or cloud-based commercial solutions. 

Target devices. The devices in focus are line-of-business assets, from simple temperature sensors to complex factory 

production lines with hundreds of components with sensors inside them.  

The actual purpose for these devices will dictate their technical design as well as the amount of resources needed for their 

production and scheduled lifetime operation. The combination of these two key factors will define the available 

operational energy and physical footprint, and thus the available storage, compute, and security capabilities. The reference 

architecture is generally neutral toward the runtime, platform, operating system, and performed function of the device.  

3.1.2. Field gateway 
A field gateway is a specialized device-appliance or general-purpose software that acts as a communication enabler and, 

potentially, as a local device control system and device data processing hub. A field gateway can perform local processing 

and control functions toward the devices; on the other side it can filter or aggregate the device telemetry and thus reduce 

the amount of data being transferred to the cloud back end. 

A field gateway’s scope includes the field gateway itself and all devices that are attached to it. As the name implies, field 

gateways act outside dedicated data processing facilities and are usually collocated with the devices.  

A field gateway is different from a mere traffic router in that it has an active role in managing access and information flow. 

It is an application-addressed entity and network connection or session terminal. For example, gateways in this context 

may assist in device provisioning, data filtering, batching and aggregation, buffering of data, protocol translation, and 

event rules processing. NAT devices or firewalls, in contrast, do not qualify as field gateways since they are not explicit 

connection or session terminals, but rather route (or deny) connections or sessions made through them. 

3.1.3. Cloud gateway  
A cloud gateway is the part of the cloud-based architecture that enables remote communication to and from devices or 

field gateways, which potentially reside at several different sites. A cloud gateway will either be reachable over the public 

Internet, or a network virtualization overlay (VPN), or private network connections into Azure datacenters, to insulate the 

cloud gateway and all of its attached devices or field gateways from other network traffic. 

It generally manages all aspects of communication, including transport-protocol-level connection management, 

protection of the communication path, device authentication, and authorization toward the system. It enforces connection 

and throughput quotas, and collects data used for billing, diagnostics, and other monitoring tasks. The data flow from the 

device though the cloud gateway is executed through one or multiple application-level messaging protocols. 

In order to support event-driven architectures and the common communication patterns outlined in section 2.2.3, a cloud 

gateway typically offers a brokered communication model. Telemetry and other messages from devices are input into the 

cloud and the message exchange is brokered by the gateway. Data is durably buffered, which not only decouples the 
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sender from the receiver, but also enables multiple consumers of the data. Traffic from the service back end to devices 

(such as notifications and commands) is commonly implemented through an “inbox” pattern. Even when a device is 

offline, messages sent to it will be durably persisted in a store or queue (representing the inbox for a device) and delivered 

once the device connects. Due to possible time-delayed consumption of events, providing a time-to-live (TTL) value is 

important, especially for time-sensitive commands, such as "open car or home door" or "start car or machine." The inbox 

pattern will store the messages in the durable store for the given TTL duration, after which the messages will expire. 

Brokering the communication through the described patterns allows decoupling the edge from the cloud components 

with respect to run-time dependencies, speed of processing, and behavior contracts. It also enables the composability of 

publishers and consumers as needed to build efficient, high-scale, event-driven solutions.  

Technology options 

Azure IoT Hub. The role of the main cloud gateway technology in Azure is taken on by Azure IoT Hub, which is a high-

scale service enabling secure bidirectional communication from variety of devices. Azure IoT Hub connects millions of 

devices and supports high-volume telemetry ingestion to a cloud back end as well as command and control traffic to 

devices. Azure IoT Hub follows the principles outlined in section 7 and supports multiple consumers for cloud ingestion as 

well as the inbox pattern for devices. Azure IoT Hub provides support for the AMQP 1.0 with optional WebSocket6 support, 

MQTT 3.1.17, and native HTTP 1.1 over TLS protocols. 

Azure Event Hubs. Azure Event Hubs is a high-scale ingestion-only service for collecting telemetry data from concurrent 

sources at very high throughput rates. Event Hubs could also be used in IoT scenarios, in addition to IoT Hub, for 

secondary telemetry streams (that is, non-device telemetry), or collecting data from other system sources (such as weather 

feeds or social streams). Event Hubs doesn’t offer per-device identity or command and control capabilities, so it might be 

suited only for additional data streams that could be correlated with device telemetry on the back end, but not as a 

primary gateway for connecting devices. Azure Event Hubs provides support for the AMQP 1.0 with optional WebSocket 

support, and native HTTPS protocols.  

Support for additional protocols beyond AMQP, MQTT and HTTP can be implemented using a protocol gateway 

adaptation model. Examples of protocols that can use this model are CoAP or OPC TCP.8 

3.1.4. Custom cloud gateway  
A custom cloud gateway enables protocol adaptation and/or some form of custom processing before reaching the cloud 

gateway communication endpoints. This can include the respective protocol implementation required by devices (or field 

gateways) while forwarding messages to the cloud gateway for further processing and transmitting command and control 

messages from the cloud gateway back to the devices. In addition, custom processing such as message transformations or 

compression/decompression can also be implemented as part of a custom gateway. However, this needs to be evaluated 

carefully because, in general, it’s beneficial to ingest the data to the cloud gateway as fast as possible and then perform 

transformations on the cloud back end decoupled from the ingestion. 

                                                      

6 http://en.wikipedia.org/wiki/WebSockets  
7 http://mqtt.org/  
8 http://en.wikipedia.org/wiki/OPC_Unified_Architecture  

http://en.wikipedia.org/wiki/WebSockets
http://mqtt.org/
http://en.wikipedia.org/wiki/OPC_Unified_Architecture
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Custom gateways help connect a variety of devices with custom or proprietary requirements and normalize the edge 

traffic on the cloud end. Solution-specific custom gateways will commonly act as a pass-through facility and can 

implement a custom authentication or rely on the authentication and authorization capabilities of the cloud gateway. 

Note: In general, custom gateways can be deployed on the edge as well, and in some cases there 

might be multiple gateways between a device and the cloud gateway. In the context of this 

reference model, a custom gateway deployed on the edge would act as a field gateway. 

Technology options 

Custom gateways are typically built and operated to fulfil specific solution requirements. They may, and often will, lean on 

shared open-source code that is built in collaboration with the system integrator (SI) and independent software vendor 

(ISV) community.  

Azure IoT protocol gateway. Azure IoT protocol gateway is an open-source framework for custom gateways and 

protocol adaptation. The Azure IoT protocol gateway facilitates high-scale, bidirectional communications between devices 

and Azure IoT Hub. It includes a protocol adapter for MQTT that showcases the techniques for implementing custom 

protocols and enables customizations of the MQTT protocol behavior, if required. The protocol gateway also allows for 

additional processing such as custom authentication, message transformations, compression/decompression, or 

encryption/decryption.  

3.1.5. IoT client  
Cloud-communication with devices or field gateways must occur through secure channels to the cloud gateway endpoints 

(or cloud-hosted custom gateways). 

In addition to a secure communication channel, the device usually needs to deliver telemetry data to the cloud gateway 

and allow for receiving messages and executing actions or dispatching those to appropriate handlers in the client. As 

described earlier in the section 2.2.3, all device (or gateway) connections and routes should be established in an 

outbound-only fashion. 

There are three key patterns for client connectivity being used in IoT systems:  

 Direct connectivity from the device app/software layer 

 Connectivity through agents 

 Using client components integrated in the app/software layer of the device or gateway 

Direct connectivity. In this case the communication to a cloud gateway endpoint is natively coded in the device (or field 

gateway) software layer using the desired protocols. This requires knowledge of the required protocols and message 

exchange patterns, but provides full control over the implementation down to the bits on the wire. 

Agents. An agent is a software component installed on a device (or field gateway) that performs actions on behalf of 

another program or managing component. In the IoT space agents are typically controlled and act for components 

running on the cloud back end. For example, in the case of a command sent to a device, the agent will receive the 

command and can execute it directly on the device. 

Agents could be proprietary agents, specifically written for a particular software solution, or standard-based agents 

implementing particular standards such as OMA LWM2M. In both cases it’s convenient for device developers to integrate 
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and rely on the encapsulated capabilities of the agents; however, there are some limitations. Typically, agents represent a 

closed system, constrained to the capabilities provided by the agent for a set of supported platforms. Portability to other 

platforms or customizations and extensions beyond the provided functionality are typically not possible.  

Client components. Client components provide a set of capabilities that can be integrated in the software code running 

on the device to simplify the connectivity to a back end. They are typically provided as libraries or SDKs that can be linked 

or compiled into the software layer of the device. For example, if a cloud back end sends a command to a device, the 

client components will simplify receiving the command, though the execution will be performed in the scope of the 

app/software layer. 

Compared to agents, client components require integration effort into the device software, but they provide the greatest 

flexibility for extensibility and portability.  

Technology options 

Azure IoT device SDKs. The Azure IoT device SDKs represent a set of client components that can be used on devices or 

gateways to simplify the connectivity to Azure IoT Hub. The device SDKs can be used to implement an IoT Client (shown in 

Figure 3) that facilitates the connectivity to the cloud. They provide a consistent client development experience across a 

broad number of platforms without having to confront device developers with the complexity of distributed systems 

messaging. The libraries enable the connectivity of a heterogeneous range of devices and field gateways to an Azure-

based IoT solution. They simplify common connectivity tasks by abstracting details of the underlying protocols and 

message processing patterns. The libraries can be used directly in a device application or to create a separate agent 

running on the device that establishes connectivity with the cloud gateway and facilitates the communication between the 

device and the IoT solution back end. 

The Azure IoT device SDKs are an open-source framework that is aligned with the Azure IoT platform capabilities. While 

these libraries simplify the connectivity to Azure IoT Hub, they are optional and not required if device developers choose 

to connect to the IoT Hub endpoints using existing frameworks and supported protocol standards.

3.2. Device identity store  
Device identity authority. The device identity store is the authority for all device identity information. It also stores and 

allows for validation of cryptographic secrets for the purposes of device client authentication (see Figure 4, on the 

following page). The identity store does not provide any indexing or search facility beyond direct lookup by the device 

identifier; that functional role is taken on by the device registry (see next section for details). Identity and registry stores 

are primarily separated for security reasons; lookups on the registry should not allow disclosing cryptographic material. 

Further, limiting the identity store to a minimal set of system-controlled attributes helps to provide fast and responsive 

operations, while on the other hand the schema of the registry store is determined by the solution requirements. 

The cloud gateway relies on the information in the identity store for the purposes of device authentication and 

management. The identity store could be contained in the cloud gateway, or alternatively the cloud gateway could use 

separate device identities externally.  

Provisioning. Device provisioning uses the identity store to create identities for new devices in the scope of the system or 

to remove devices from the system. Devices can also be enabled or disabled. When they are disabled, they have no access 

to the system, but all access rules, keys, and metadata stay in place. 
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Changes on the device identity store should be made through the Provisioning API, described in section 3.4.  

 
Figure 4 Device provisioning and device identity, registry, and state stores 

Technology options 

Azure IoT Hub includes a built-in device identity store that is the authority for registered devices and provides per-device 

security credentials.  

When a custom cloud gateway is used, it can also rely on the IoT Hub identity store and its authentication and 

authorization capabilities. In case there are specific solution requirements that necessitate a custom implementation of the 

identity store, it will be a separate component that will primarily enforce identifier uniqueness, store all required security 

keys for the device, and will potentially hold an “enabled/disabled” status. If it includes transmitted passphrases, those 

should be stored in the form of salted hashes. Please keep in mind that a custom implementation of the identity store 

needs to be secured appropriately, because it stores credential information. 

The identity store should only permit access to privileged parts of the system as necessary; custom gateways will look up 

the required authentication material from this store. 

If not using Azure IoT Hub, external implementations can be realized on top of Azure DocumentDB, Azure Tables, Azure 

SQL Database, or third-party solutions: 

 Azure DocumentDB: In Azure DocumentDB,9 each device is represented by a document. The system-level device 

identifier directly corresponds to the “id” of the document. All further properties are held alongside the “id” in the 

document. 

 Azure Tables: In Azure Tables, the identity store maps to a table. Each device is represented by a row. The 

system-level device identifier is held in a combination of PartitionKey and RowKey, which together provide 

uniqueness. All further properties are held in columns; complex data can be stored as JSON, if needed. The 

                                                      

9 http://azure.microsoft.com/en-us/documentation/articles/documentdb-introduction/ 

 

http://azure.microsoft.com/en-us/documentation/articles/documentdb-introduction/
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concrete split of the identifier information across those fields is application specific and should follow the scale 

guidance for the service.10 

 SQL Database: In SQL, the identity store also maps to a table and each device is represented by a row. The 

system-level device identifier is held in a clustered index primary key column. All further properties are stored in 

columns; complex data or data requiring extensibility can be stored as JSON, if needed. 

 Third-party options: Third-party solutions available through the Azure Marketplace or directly deployed on 

Azure compute nodes can be used as well. For example, in Cassandra, each device can be represented by a row in 

a column family. The store will be partitioned and indexed for fast access as needed. 

3.3. Device registry store 
Definition and function. The device registry is an “index” database existing alongside the identity store, which contains 

discovery and reference data related to provisioned devices. While the identity store only contains system-controlled 

attributes and cryptographic material that is immediately available, the registry will store other device-related metadata 

information for the solution (see Figure 4, in the preceding section).  

The registry does not impose any particular schema model or structure for device metadata, but it is possible to define a 

schema model, or select some vertical industry-standard schema model for device metadata. During provisioning, each 

device is registered with a metadata record, which can contain structured metadata and can include links to externally held 

operational data. 

Device registry versus identity store. The device registry is an index, while the identity store represents the authoritative 

list of device identities. The record in the identity store determines whether or not a device is active in the system. For 

security reasons, the device registry must not store any key or other cryptographic information related to the device. 

Metadata. The distinction between metadata describing the device itself and operational data reflecting the state of the 

device is important because it directly impacts how the registry information can be used, cached, and distributed 

throughout the system. Metadata is typically slow-changing data, while the operational data is expected to be fast-

changing.  

For example, the geo-position of a traffic-light pole is metadata, but the current geo-position of a vehicle is considered 

operational data. The vehicle’s identification number, model, and make will be metadata. Discovery of all traffic lights on a 

particular stretch of road can be performed as a registry query, while finding all vehicles currently driving on a particular 

stretch of road would be an analysis task inside the solution over operational data. The metadata in the registry can help 

as reference data for finding all vehicles of a particular model on the road, however. 

Changes on the device registry should be made through the Provisioning API.  

Technology options 

The device registry storing descriptive information about the device should provide rich or free-form index capabilities 

with the goal of providing fast lookups.  

 

                                                      

10 http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx 

http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx
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The registry store can be implemented on top of one of the following technologies:  

 DocumentDB: In Azure DocumentDB, each device is represented by a document. The system-level device 

identifier directly corresponds to the “id” of the document. All further properties are held alongside the “id.” 

DocumentDB is well suited for the registry function because it accepts arbitrarily structured data and automatically 

creates indexes (unless disabled for specific attributes). This allows for fast and flexible lookups11 across the 

registered devices, which is the purpose of the registry. 

 SQL Database: In SQL, the registry maps to a table and each device is represented by a row. The system-level 

device identifier is held in a clustered index primary key column. All further properties are stored in columns; 

complex data or data needing extensibility can be stored as JSON or XML, if needed. Based on query patterns the 

appropriate columns will need to be indexed.  

 Third-party options: In addition to managed Azure services, third-party data services available through the Azure 

Marketplace or directly deployed on Azure compute nodes can be used as well. In this case the actual schema 

depends on the application used but the structure is going to be similar to the one used for SQL Database or 

DocumentDB. Partitioning and indexing will be applied as needed for fast access based on device properties. For 

example, Cassandra’s column family could have the device identifier as partition key and could define additional 

indexes on other properties of the device. 

3.4. Device provisioning  
Definition. Provisioning represents the step of the device life cycle that is undertaken to be made known to the system. 

The Provisioning API is the common external interface for how changes are made on the device identity store and the 

device registry. It is an abstract interface with common gestures, and there is an implementation of that abstract interface 

for the identity and registry stores. Higher level workflows can implement the same or similar interface and delegate to the 

Provisioning API as appropriate in the workflow implementation. 

Provisioning workflow. A solution’s provisioning workflow takes care of processing individual and bulk requests for 

registering new devices and updating or removing existing devices. It will also handle the activation, and potentially the 

temporary access suspension and eventual access resumption. This may also include interactions with external systems 

such as a mobile operator’s M2M API to enable or disable network SIMs, or with business systems such as billing, support, 

or customer relationship management solutions. 

Technology options 

As an alternative to traditional programing techniques, Azure API Apps12 can be used for the implementation of the 

Provisioning API. API Apps provides a platform for building, hosting, and distributing APIs in the cloud and on-premises. 

API Apps integrates seamlessly with Azure Logic Apps,13 which can be used for the implementation of an overarching 

provisioning workflow across the IoT solution and external business systems. 

The provisioning interface is a simple set of gestures for managing the device life cycle. The provisioning interface (API) 

should be implemented as the primary API over the identity and registry stores and optionally other internal solution 

components if required. It is not only used from the solution UI (for example, the device administration portal), but also 

                                                      

11 http://azure.microsoft.com/en-us/documentation/articles/documentdb-sql-query/ 
12 https://azure.microsoft.com/en-us/documentation/articles/app-service-api-apps-why-best-platform/ 
13 https://azure.microsoft.com/en-us/documentation/articles/app-service-logic-what-are-logic-apps/ 

http://azure.microsoft.com/en-us/documentation/articles/documentdb-sql-query/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-apps-why-best-platform/
https://azure.microsoft.com/en-us/documentation/articles/app-service-logic-what-are-logic-apps/
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serves as the interface for a higher level workflow that can also interact with external entities such as a mobile operator’s 

M2M API for managing SIM cards or a backend business system for activating a billing account associated with the device. 

The following table provides an overview of the typical functionality exposed through the provisioning API. For brevity, it 

does not list success or error codes. 

Operation Arguments Return  

Register 

Registers the device in the 

system. 

id (string) Device identifier to 

be used. Might be 

optional in which 

case the identity is 

service assigned.  

keytokens A single key or a 

map of named keys 

to be registered for 

the device in the 

identity store. 

Might be optional, 

in which case the 

keys are service 

assigned. 

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. 
 

id (string) Device identifier 

recorded for the 

device.  

keytokens A map of named 

keys or tokens 

assigned to the 

device. This is the 

only time these 

particular keys 

surface through an 

API call. 

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. 
 

Unregister 

Removes the device from the 

system. 

id (string) Device identifier.  
 

 

Activate 

Activates the device from a 

previously deactivated state 

(which includes granting access). 

id (string) Device identifier.  

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. This 

metadata is 

merged into the 

existing metadata 

set. 
 

id (string) Device identifier 

recorded for the 

device.  

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. 
 

Deactivate 

Deactivates the device from a 

previously activated state (which 

includes revoking access). 

id (string) Device identifier. 

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. This 

metadata is 

merged into the 

existing metadata 

set. 
 

id (string) Device identifier 

recorded for the 

device.  

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. 
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Update 

Updates the device metadata in 

the registry. 

id (string) Device identifier.  

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. This 

metadata is 

merged into the 

existing metadata 

set. 
 

id (string) Device identifier 

recorded for the 

device.  

metadata Structured data 

object containing 

descriptive 

metadata for the 

device. 
 

ResetCredentials 

Full reset of all device 

credentials and tokens.  

id (string) Device identifier.  

keytokens A single key or a 

map of named keys 

to be registered for 

the device in the 

identity store. 

Might be optional, 

in which case keys 

are service 

assigned. 
 

id (string) Device identifier 

recorded for the 

device.  

keytokens A map of named 

keys or tokens 

assigned to the 

device. This is the 

only time these 

particular keys 

surface through an 

API call. 
 

 

Security keys can be generated outside of the API and passed in as parameters or can be created and assigned by the 

service as part of the provisioning API call.  

Generating a security token can be performed in the Provisioning API using the required signing key. The token issued to 

a device will be limited in scope to a particular endpoint (for example, a device endpoint in the case of IoT Hub or Event 

Hub publisher policy). The data returned by the Register and ResetCredentials operation contains the required security 

tokens that must be transferred to the devices. Alternatively, security tokens could be generated on the device or 

externally and passed to the devices.  

For custom gateways, the required credentials can be generated externally and passed into the API for storage, or the API 

can be extended to create the keys. 

3.5. Device state store  
Definition. Operational data related to the devices resides in the device state store. The device state store is separate from 

the device registry. Any device’s registry record will commonly point to the device’s state store.  

While storing the raw information from the device is often desirable, the state store is an optional architectural element. A 

simple implementation can include writing the device data stream to a storage by default, but the store itself and the data 

flow to it can be removed or changed. 

The default shape for the device state store is that it retains two kinds of information. One part is the raw stream of 

incoming events from the device. The other is a “last known values” record that is a projection of the last observed values 

captured from the device. 
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Technology options 

For a minimal implementation, the incoming raw data or message projections can be stored in Azure Blobs or Tables, 

which helps to optimize for cost. The incoming messages can be forwarded “as is,” or can be modified to some other 

output shape. The data could be consumed directly from the store or additional transformations can be performed using 

Azure Data Factory,14 which will allow for secondary transformation, aggregations, and data movement as needed for the 

solution. 

In addition to the raw data, the last known values for a device are stored separately as a record that gets constantly 

overwritten. This record can be a separate Azure blob or table object, or can be added as a separate document to the 

device registry for fast querying capabilities. Aggregated or calculated values can be added to this or a separate record 

too. 

In some cases, the operational data will be segregated in different stores based on access patterns. For example, data for 

audit purposes such as state changes, history of operations, and commands will be accessed and processed independent 

of other operational data. Archival data, moved to a separate storage after a certain retention period, is another example. 

Logical separation of data for groups of devices (such as geographically) or maybe for subcomponents of complex devices 

is possible as well. The partitioning design will follow the access needs and operational requirements for the data. An 

implementation choice should be made for each of these stores individually driven by the workload patterns: 

 Azure Data Lake: Azure Data Lake is a distributed data store allowing to persist vast amounts of relational and 

nonrelational data without transformation or schema definition. It can handle high volumes of small writes at low 

latency, is optimized for massive throughput, and well suited for event streams in IoT scenarios. 

 Azure Blob storage: Blobs can be used to store raw device data. Containers and blob names can be used to 

represent a certain structure of the storage space that will be designed based on the solution requirements. Using 

append blobs instead of standard blobs can be considered when appropriate. 

 Azure Tables: Device records and aggregated or computed values can be stored in Azure Table. Azure Tables are 

also suited for logging, auditing information, or other types of device data that will be accessed by partitions or 

directly at the entity level, because there are no secondary indexes. The partitioning strategy and use of 

PartitionKey and RowKey is solution specific and should be designed in accordance with the scale guidance for 

Azure Tables.15 

 Azure DocumentDB: Datasets that can benefit from flexible, schema-agnostics indexing capabilities and rich SQL 

query interface can be stored in DocumentDB, which combines the management of schema-free, no-SQL 

documents with complex SQL language queries. 

 SQL Database: For datasets that require relational storage and query capabilities. SQL Database also provides 

advanced features for data management, protection and security, and business continuity. 

 Azure Search: Azure Search16 can be used in scenarios requiring full-text search scoped over the data content and 

advanced search behavior. 

 Azure Cache: In addition to durable storage options, device state can also be held in Azure Cache for fast lookups 

of device state and operational data. 

                                                      

14 https://azure.microsoft.com/en-us/documentation/articles/data-factory-introduction/ 
15 http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx 
16 https://azure.microsoft.com/en-us/documentation/articles/search-what-is-azure-search/  

https://azure.microsoft.com/en-us/documentation/articles/data-factory-introduction/
http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx
https://azure.microsoft.com/en-us/documentation/articles/search-what-is-azure-search/


 

 

Azure IoT Reference Architecture            20  

 Third-party options: In addition to the Azure services just mentioned, third-party options hosted in Azure can be 

used as well. A few examples of third-party data services include MongoDB, Cassandra, Elastic Search, and time 

series databases such as OpenTSDB and InfluxDB. If an Actor Model as described in section 3.8 is used, parts of 

the device state will be based on the persistence options that the Actor framework provides. For example, for Akka 

and Akka.net this can be Cassandra, LevelDB, or any other storage system they support. 

The different storage options will require careful design of the partitioning strategy and capacity unit management (with 

the exception of Azure Data Lake). 

3.6. Data flow and stream processing 
Facilitating data flow. After ingress through the cloud gateway, the flow of data through the system is facilitated by data 

pumps and analytics tasks (shown as Stream Processors in Figure ). Data pumps are typically moving or routing data 

without any transformation, while analytics tasks perform complex event processing. 

As described in the data concepts section above, multiple data streams can flow concurrently. In addition, since the cloud 

gateway provides brokered communication and supports multiple consumers, the same data can be consumed by 

different stream processors for different purposes. For example, a stream processor may listen only for special types of 

events, while another one could perform complex event processing in parallel. Those processors can determine the path of 

data and route without any reshaping or perform complex event processing tasks such as data aggregation, data 

enrichment through correlation with reference data, as well as analytics tasks such as detection of threshold limits or 

anomalies and generation of alerts. 

Figure  shows the core flows facilitated by stream processors of an IoT solution.  

 

Figure 5 Stream processors

The following paragraphs describe typical patterns and data flows of the reference architecture.  

Raw telemetry. The simplest flow is facilitated by a data pump reading device telemetry from the cloud gateway and 

persisting it into storage. This data can be used as archive for raw device data as well as for batch analytics. 
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Bulk upload. Large amounts of raw telemetry data might also be collected on the edge and uploaded using bulk 

operations. This is a viable alternative for (cold) telemetry data, when there is no need to process individual records and to 

immediately act upon the data. It can be uploaded and used as archive or for batch analytics later. 

Device state. In addition to processing the raw device data a stream processor can keep updating the “last known values” 

for devices. Specific aggregated or precalculated values can also be stored in the device state store for easy access by the 

app back end as required by the solution logic. 

Device metadata. In some cases, devices may send messages indicating changes of their metadata attributes. Typically, 

those are separated from the general telemetry stream. An event processor can “listen” for those messages and update 

the device registry as appropriate. An example would be a configuration change performed on the device. 

Special events. Special types of messages (that is, non-telemetry messages) coming from devices include solution-specific 

events such as alarms, notifications, and domain-specific updates. Those messages can be processed as a separate stream 

by a dedicated event processor, or in some cases combined with inquiries and command responses flowing to the back 

end. 

Diagnostics telemetry. In addition to device telemetry, there could be a data flow of diagnostics information emitted by 

devices. This stream related to health and operations conditions of a device most likely will be handled separately from the 

general telemetry. 

Hot path analytics. A complex event processing engine can analyze ingested events in (near) real time, comparing 

multiple real-time streams or comparing real-time streams with historical values and models. This enables the detection of 

anomalies, recognition of patterns over rolling time windows, and the ability to trigger an alert when a specific error or 

condition appears in the stream. Generated alerts are forwarded to the app back end to be handled according to the 

business rules or can initiate an integration workflow with line-of-business systems directly. 

Advanced analytics and machine learning. Incoming events can also be forwarded to specialized modules for advanced 

analytics and machine learning. Those can perform large-scale, in-motion analysis and visualizations.  

The reference architecture assumes the use of multiple event processors, dedicated to the processing of one or several of 

the described core data flows. Devices will typically segregate the traffic in multiple data streams by using discriminators in 

the application protocol header (for example, message properties such as “stream-id” or “subject”) that will allow for the 

routing and processing by the appropriate stream processor. Devices or gateways might also implement some data 

classification logic, and split the data into categories for cold or hot path processing, for example.  

Technology options 

In Microsoft Azure, the Stream Analytics service, Apache Storm implemented in Azure HDInsight, or custom event 

processors can facilitate the flow of data from the ingestion point in Azure IoT Hub or Event Hubs. They can perform 

timely processing of the data stream, including data aggregation, data enrichment through correlation with reference 

data, detection of threshold limits and producing alerts, and other analytics tasks. These event processors can also be used 

as a rule engine environment, where event rules for thresholds and limits can be defined, configured, and 

activated/deactivated.  
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The output of these processing tasks is commonly a permanent storage location in Azure Blobs, Azure Tables, Azure SQL 

Database, HDInsight HBase,17 or some other store. The output can also be forwarded to Event Hubs or, when the data flow 

has been sufficiently reduced, also to Azure Service Bus Queues and Topics for distribution into subsystems where further 

downstream processing is performed.  

Note: Azure Stream Analytics currently allows forwarding data into Azure Blobs and Tables, SQL 

Database, DocumentDB, Event Hubs, Service Bus Queues and Topics, as well as Power BI. Custom 

event processors and HDInsight Storm bolts allow forwarding into any event sink either through 

custom-built code or available open-source components. 

In addition to Azure Stream Analytics and Apache Storm, it’s possible to build a Lambda architecture in Azure using 

frameworks such as Apache Kafka, Apache Cassandra, and Apache Spark for downstream processing. The incoming stream 

of data (for example, device telemetry) is going to be routed to the various processing stages via Kafka and stored in 

Cassandra so that batch and big data jobs (such as Spark jobs) can be executed on the data.  

After data is at rest, it can be picked up, transformed, and stored in a different store using a continuously or periodically 

running data pump (or pipeline), available through Azure Data Factory. Data factories can perform nearly arbitrary 

transformations and transfers of at-rest data between Azure blobs, Azure tables, and SQL databases in Azure PaaS, IaaS, or 

running on on-premises servers. 

Azure Stream Analytics uses SQL-based language for rapid development, while HDInsight Storm and custom event 

processors are programing code-based solutions that require deploying code in the runtime environment, but also 

provide full flexibility for processing. Because of the ease of use of Stream Analytics and transparency of SQL syntax used, 

an example of a minimal implementation using Stream Analytics will be described to better explain the core concepts of 

an event stream processor. In this example, Stream Analytics is connected directly to Azure IoT Hub as a stream input 

source and is used as a data pump and rule engine performing the following processing tasks: 

 Raw telemetry: A Stream Analytics job based on “SELECT * FROM <iot-hub input>” query captures the incoming 

raw data unmodified. If special types of events (such as device metadata updates) should be excluded, a WHERE 

clause can be added to filter out those messages. The output of this job is configured to persist data into Azure 

Blob storage. Once in Azure storage additional transformations or data movement can be realized using Azure 

Data Factory. 

Note: If the order of events per device is relevant for the application and the way records are persisted, the query 

used in this example needs to be modified to “SELECT * FROM <iot-hub input> Partition By PartitionId” to ensure 

events within a partition are processed in the same order as received. 

 Telemetry transformations. In addition, further Stream Analytics jobs can be defined to create projections 

through a range of operators from simple filters to complex correlations and lookups. This leads to new stream(s) 

originating at this stage of the data flow that can be captured as part of the application-specific model (used for 

backend analytics or application logic).  

 Rules and alerts. As mentioned, Stream Analytics jobs can be used to execute rules for detection of thresholds 

and limits, such as using a syntax similar to “SELECT <alert> FROM <iot-hub input> WHERE <device-attribute> 

>= <value>”. However, a single spike in measurement might not be enough to trigger an alert. An average value 

over a certain period of time violating the desired threshold might be a more appropriate way to express the rule. 

                                                      

17 http://hbase.apache.org/  

http://hbase.apache.org/
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The generated alert will be output to a Service Bus Queue or Event Hubs for processing by the back end, which 

will typically trigger a preconfigured action.  

 Per-device telemetry. A custom event processor18 reading from Azure IoT Hub can be used to segregate the 

incoming data stream into a per-device state store. Using this technique, the data stream events for each device 

are written to a separate device state store based on Azure Blob storage.  

An alternative approach is to modify the Stream Analytics job for raw telemetry (based on the “SELECT *” query 

described previously in the “Raw telemetry” bullet) and configure its output to an internal-flow Event Hub. Then 

an event processor for Event Hub is used to segregate the incoming data stream into a per-device state store. The 

advantage of this technique is that in addition to the raw data from the device, projections from Stream Analytics 

jobs may produce the last known values, averages, or other pertinent device attributes, which can be stored as a 

separate record (for example when those are used to represent a device state in the application layer).  

In general, even for the raw telemetry, going through the Stream Analytics data path has the advantage of 

allowing for easy modification of the job query to create a data stream projection (for example, including filtering 

or correlation with reference data).  

In addition to the described data flows, further Stream Analytics outputs or jobs can be used to output data to permanent 

storage locations (in Azure storage or databases), or to Service Bus Queues, Topics, or Event Hub, for distribution into 

subsystems and downstream analysis or processing. 

In a very simplified form of implementation, when no rules engine and no additional data flow paths are required, an 

event processor can be used to process the incoming data stream directly from the ingestion IoT Hub into the device state 

store. Using Azure Stream Analytics or HDInsight Storm bolts as a data pump and rules engine provides flexibility to easily 

add new output projections and data streams as needed. 

3.7. Solution UX  
The solution user experience (UX) typically includes a website, but can also include web services and APIs with a graphical 

user interface in the form of a mobile or desktop app.  

The solution UX is, as the name implies, part of the solution and implements access to and visualization of device data and 

analysis results, discovery of devices through the registry, command and control capabilities, and the workflows of the 

provisioning. In many cases, end users will be notified of alerts, alarm conditions, or necessary actions that need to be 

taken through push notifications. 

The solution UX can also provide or integrate with live and interactive dashboards, which are a suitable form of 

visualizations for IoT scenarios with large population of devices. 

IoT solutions often include geo-location and geo-aware services and the UI will need to provide appropriate controls and 

capabilities. 

As stated in beginning of this document, security is key and the solution UX that provides control over the system and 

devices needs to be secured appropriately with access control differentiated by user roles and depending on 

authorization. 

                                                      

18 http://azure.microsoft.com/en-us/documentation/articles/service-bus-event-hubs-csharp-ephcs-getstarted/ 

http://azure.microsoft.com/en-us/documentation/articles/service-bus-event-hubs-csharp-ephcs-getstarted/
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Technology options 

Azure App Service is a managed platform with powerful capabilities for building web and mobile apps for many platforms 

and mobile devices. Web Apps and Mobile Apps allow developers to build web and mobile apps using languages like 

.NET, Java, NodeJS, PHP, or Python. In addition, Azure API Apps allows easy exposure and management of APIs, which can 

be accessed by mobile or web clients. 

Azure Notification Hubs enables sending of push notifications to personal mobile devices (that is, smartphones and 

tablets). It supports iOS, Android, Windows, and Kindle platforms, while abstracting the details of the different platform 

notification systems (PNS). With a single API call, a notification can target an individual user or an audience segment with 

a large number of users. 

In addition to the traditional UI, dashboards are very important in IoT scenarios because they provide a natural way for 

aggregated views and help visualize a vast number of devices. Power BI is a cloud-based service that provides an easy way 

to create rich, interactive dashboards for visualizations and analysis. Power BI also offers live dashboards, which allow users 

to monitor changes in the data and indicators. Power BI includes native apps for desktop and mobile devices. 

Another suitable technology for IoT visualizations is Bing Maps.19 The Bing Maps APIs include map controls and services 

that you can use to incorporate Bing Maps in applications and websites. In addition to interactive and static maps, the APIs 

provide access to geospatial features such as geocoding, route and traffic data, and spatial data sources that you can use 

to store and query data that has a spatial component, such as device locations.  

The web and mobile apps can be integrated with Azure Active Directory (AAD) for authentication and authorization 

control. The apps will rely on the management of user identities in AAD and can easily provide role-based access control 

for the application functionality. In many cases there will be logical associations between IoT devices and users (or 

between groups of devices and groups of users). For example, a device can be owned by someone, used by someone else, 

and installed or repaired by another user. Similar examples can be true for groups of devices and users. Permissions and 

role-based access control can be managed as part of an association matrix between device identities (maintained in the 

device identity store) and user identities managed by AAD. The specific design of this matrix, granularity of permissions, 

and level of control will depend on the specific solution requirements. This matrix can be implemented on top of the 

device registry or can use a separate store using different technology. For example, the device registry can be 

implemented using DocumentDB, while the association and permission matrix can be built using a relational SQL 

database. Please note that this topic is discussed in this section because user authentication and authorization is surfaced 

as part of the UX; however, the actual implementation will be spread across multiple underlying components, including 

the device registry and the app back end, discussed in the next section. 

3.8. App back end 
The application back end implements the required business logic of the solution. It implements the appropriate object 

models and abstractions for devices, groups of devices and relations between devices, business rules and actions, and also 

manages access and associations between devices and users. Important parts of the application backend are the “custom” 

control logic of the solution, device discovery and visualization, device state management and command execution, as 

                                                      

19 http://msdn.microsoft.com/en-us/library/ff428643.aspx 

http://msdn.microsoft.com/en-us/library/ff428643.aspx
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well as the device management portion that controls the device life cycle, enables distribution of configuration and 

software updates, and remote control of devices.  

Unlike traditional business systems, the business logic of an IoT solution might be spread across different components of 

the system. The solution’s device management part will commonly use compute nodes, whereas the analytics portion of 

the solution will be largely implemented directly inside the respective analytics capabilities.  

In extreme cases, simple solutions built along the lines of this guidance may indeed not have an independently deployed 

and managed “business logic” app back end, but the core logic may exist as rule expressions hosted inside the stream 

processors, some of the analytics capabilities, and/or as part of the business workflows and connector components. 

Technology options 

There are several implementation options for the backend logic. As mentioned above, some of the logic will be 

implemented in the event processors and analytics components of the system. Implementation choices for those 

components were covered in the respective sections. This section focuses specifically on the business logic back end.  

Programming techniques that don’t support hyper-scale. Many of the architectural patterns and programming 

techniques that have been popular for the past decades are applicable to IoT solutions, but might face scalability 

challenges at large number of devices. Hence, for large IoT deployments, these models should only be used with stateless 

app back end running on vastly scalable compute nodes. Scaling out a stateful application layer represents a difficult 

problem with traditional architectures. In those cases, scale appropriate compute models such as actor frameworks or 

batch processing can be used, as described in the next sections. 

Actor frameworks. Actor frameworks represent an extremely well-suited compute model for IoT scenarios. The actor 

programming model is not new, but is currently gaining traction because it fits well in scenarios where there are a lot of 

“independent” units with a specific behavior and independent local data/state. The actor framework provides a good 

abstraction model for devices that need to communicate with backend services. A (physical) device can be modeled as an 

actor with defined behavior and local state that will run on the back end. The actor becomes a virtual representation of the 

physical device. An actor can represent a stateful computation unit that manages its own state. Unlike traditional 

programming techniques, where an instance of an object is created and the state needs to be loaded from outside, a 

stateful actor has immediately intrinsic state. With a 1:1 relationship between a device and backend “code,” the actual 

implementation becomes easier and developers can focus on the specific behavior that is required to manage a single 

type of device. 

In addition, actor models provide a way to create hierarchies of actors, in order to represent relationships among devices 

or group of devices. For instance, it is easy to model all the sensors in a building as a hierarchy of actors: a building can be 

an actor that is composed of a set of floor actors, a floor actor is defined as a set of room actors, and each room actor can 

control a set of sensors in that room. This way, it is easy to write complex rules and logic that iterate the actor hierarchy. 

Each element of the hierarchy provides the right behavior and state required to act or aggregate information at the higher 

level. 

An actor can process messages from devices, perform computations, and send commands or notifications to devices when 

certain conditions are met on the back end. From an abstraction perspective, developers can focus on the code that is 

required to manage one device, which results in a simple programming model. Most actor frameworks use a message-

based architecture, and communication with and among actors is managed by the framework. Actors are invoked only 

when one or more messages are available and need to be processed; that is, the actor is activated by the framework when 
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there is work to be performed. There is no need to have any “worker role” type of component in the architecture that 

needs to stay alive to check if there is work to be done. The actor framework scheduler is responsible to schedule actors 

for execution with the goal of optimizing resource utilization. In the context of this architecture, an actor can be activated 

when a device event is received, or from the back end, based on events coming from business logic and rules, or a line-of-

business system.  

 

There are several actor frameworks available and developers can choose the one that best fits their programming, 

background, and scenario requirements. The following paragraphs introduce three popular actor frameworks: Azure 

Service Fabric Reliable Actors, Akka, and Akka.NET. 

Azure Service Fabric Reliable Actors 

Azure Service Fabric20 enables developers to build and manage scalable and reliable applications composed of 

microservices running at very high density on a shared pool of machines, commonly referred to as a Service Fabric cluster. 

It provides a sophisticated runtime for building distributed, scalable, stateless and stateful microservices and 

comprehensive application management capabilities for provisioning, deploying, monitoring, upgrading/patching, and 

deleting deployed applications. Stateful services in Service Fabric offer the benefits of having fully replicated local data 

that can be used directly by the service without the need for relying on external tools such as cache systems or storage.  

Service Fabric provides the Reliable Actors programming model. It is an actor-based programming model that uses the 

strength of the Service Fabric runtime infrastructure to provide a scalable and reliable model that developers with an 

object-oriented programming background will find very familiar. The Reliable Actors programming model is very similar to 

Orleans, and developers that are familiar with Orleans can easily migrate to Reliable Actors or can keep using the Orleans 

runtime. 

In addition to the Reliable Actors, Service Fabric also provides a lower level programming model Reliable Services21 that 

has different tradeoffs between simplicity and flexibility in terms of concurrency, partitioning, and communication22. With 

this model Reliable Collections23 can be used to store and manage device state. 

Akka 

Akka24 is a well-known Actor programming model that runs on a Java virtual machine (JVM). It is developed using the 

Scala programming language, but provides Java APIs as well. Akka-based backend applications can be hosted in Azure 

and can use Azure IoT services, while enabling a familiar programming model for developers that are already using Java or 

Scala as their language of choice. 

Akka.NET 

Akka.NET25 is a port of the Akka programming model to the .NET runtime and supports both C# and F# . Along with Akka, 

it provides a way for developers to use the Akka programming model, but run the code on top of the .NET runtime.  

                                                      

20 http://azure.microsoft.com/en-us/campaigns/service-fabric/  
21 https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/  
22 https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/  
23 https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/  
24 http://akka.io/  
25 http://getakka.net/  

 

http://azure.microsoft.com/en-us/campaigns/service-fabric/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
http://akka.io/
http://getakka.net/


 

 

Azure IoT Reference Architecture    27 

Azure Batch. Batch processing is well suited for workloads that require running lots of automated tasks, such as 

performing regular (such as monthly or quarterly) processing, risk calculations, or different types of simulations. 

Azure Batch26 is a cloud-scale job scheduling and compute management service that enables users to run highly 

parallelizable compute workloads. The Azure Batch scheduler can be used to dispatch and monitor the execution of “work” 

across large-scale compute clusters. It takes care of starting a pool of compute virtual machines, installing processing jobs 

and staging data, running the jobs, identifying failures, and re-queuing work as needed. It also automatically scales down 

the pool of resources as the work completes.  

3.9. Business systems integration 
The business integration layer is responsible for the integration of the IoT environment into downstream business systems 

such as CRM, ERP, and line-of-business (LOB) applications. Typical examples include service billing, customer support, 

dealers and service stations, replacement parts supply, third-party data sources, operator profiles and shift plans, time and 

job tracking, and more.  

The IoT solution ties into existing line-of-business applications and standard software solutions through business 

connectors or EAI/B2B gateway capabilities. End users in B2B or B2C scenarios will interact with the device data and 

special-purpose IoT devices through this layer. In many cases the end users will use personal mobile devices to access the 

functionality. Those personal mobile devices are conceptually different than the IoT devices, although in some cases there 

will be association or mapping between the end user’s mobile device and IoT devices. For example, in a home automation 

scenario, a mobile phone might act as field gateway, connecting to IoT devices and facilitating the communication for 

those. From an authorization perspective the associations between end users, personal mobile devices, and IoT devices 

will be managed by the IoT solution back end. 

Technology options 

Azure Logic Apps provide a reliable way to automate business processes. The service supports long-running process 

orchestrations across different systems hosted in Azure, on-premises, or in third-party clouds. Logic Apps allow users to 

automate business process execution and workflow via an easy-to-use visual designer. The workflows start from a trigger 

and execute a series of steps, each invoking connectors or APIs, while taking care of authentication, check-pointing, and 

durable execution. There is a very rich set of available connectors to a number of first-party and third-party systems, such 

as database, messaging, storage, ERP, and CRM systems, as well as support for EAI and EDI services and advanced 

integration capabilities through BizTalk API Apps. 

For API integration, Azure API Management provides a comprehensive platform for exposing and managing APIs that 

includes end-to-end management capabilities such as: security and protection, usage plans and quotas, policies for 

transforming payloads, as well as analytics, monitoring, and alerts. 

Integration at the data layer can be enabled by Azure Data Factory, which provides an orchestration layer for building data 

pipelines for transformation and movement of data. Data Factory works across on-premises and cloud environments to 

read, transform, and publish data. It allows users to visualize the lineage and dependencies between data pipelines and 

monitor data pipeline health. 

                                                      

26 https://azure.microsoft.com/en-us/services/batch/  

https://azure.microsoft.com/en-us/services/batch/
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3.10. At-rest data analytics 
At-rest data analytics is performed over the collected device telemetry data, and often this data is blended with other 

enterprise data or secondary sources of telemetry from other systems or organizations. Analyzing and predicting device 

operational data and behavior, based on device telemetry correlated with ambient parameters and telemetry, is a powerful 

pattern. 

There are a significant number of scenarios for when, why, and how to analyze data after it is at rest, and this reference 

architecture document does not aim to provide an in-depth explanation of these options or of at-rest data analytics. IoT 

scenarios and the general-purpose guidance for these capabilities directly applies to IoT solutions, but is not limited to 

that. Advanced analytics and big data solutions can be used in these cases.  

Technology options 

With HDInsight, the Azure platform provides a hosted implementation of the Apache Hadoop27 platform, providing 

Apache Hive,28 Apache Mahout,29 MapReduce,30 Pig,31 and Apache Storm32 as analysis capabilities.  

Power BI enables the creation of models, KPIs, and their visualization through interactive dashboards. It provides a 

powerful analytics solution for monitoring the performance of processes or operations and can help to identify trends and 

discover valuable insights. 

For data scientists acquainted with the algorithmic foundation, Azure Machine Learning provides a hosted machine 

learning capability. It offers ease of use with straightforward integration into solutions using a generated web service 

interface. 

Other options include Apache Spark, which can be used to run big data jobs, but also provides modules for graph analysis 

and machine learning.  

 

 

  

                                                      

27 http://hadoop.apache.org/  
28 http://hive.apache.org/  
29 http://mahout.apache.org/  
30 http://en.wikipedia.org/wiki/MapReduce  
31 http://en.wikipedia.org/wiki/Pig_(programming_tool)  
32 http://storm.incubator.apache.org/  

http://hadoop.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://storm.incubator.apache.org/
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4. Appendix 

4.1. Terminology 
This section provides scoped definitions for several terms that are used throughout this document. 

Devices. There are several categories of devices: personal devices, special-purpose devices, or industrial equipment to 

name a few. Personal computers, phones, and tablets are primarily interactive information devices. From a systems 

perspective, these information technology devices are largely acting as proxies toward people. They are “people actuators” 

suggesting actions and “people sensors” collecting direct input or input related to the device use. These devices are 

referred to as “personal mobile devices” in the document. 

Special-purpose devices, from simple temperature sensors to complex factory production lines with thousands of 

components inside them, are different. These devices are much more scoped in purpose, and even if they provide some 

level of a user interface (for interactions with people), they’re largely scoped to interface with or be integrated into assets 

in the physical world. They measure and report environmental circumstances, turn valves, control servos, sound alarms, 

switch lights, and do many other tasks. They help doing work for which an information device is either too generic, too 

expensive, too big, or too brittle. The actual purpose for these devices will dictate their technical design as well as the 

amount of resources needed for their production and scheduled lifetime operation. The combination of these two key 

factors will define the available operational energy, physical footprint, and thus available storage, compute, and security 

capabilities. Special-purpose devices, especially industrial equipment devices, may also be complex systems, with multiple 

subcomponents or subsystems in them.  

These special-purpose devices, referred to as “devices,” are the primary focus for this discussion, whereas information 

devices (that is, personal mobile devices) are merely playing a proxy role toward human actors in the scenarios discussed 

in this document. 

Device environment. The device environment is the immediate physical space around the device where physical access 

and/or “local network” peer-to-peer, digital access to the device is feasible. 

Local network. A “local network” is assumed to be a network that is distinct and insulated from—but potentially bridged 

to—the public Internet, and includes any short-range wireless radio technology that permits peer-to-peer communication 

of devices. This notion of “local network” does not include network virtualization technology creating the illusion of such a 

local network and it does also not include public operator networks that require any two devices to communicate across 

public network space if they were to enter a peer-to-peer communication relationship. 

Field gateway. A field gateway is a specialized appliance, or some general-purpose server computer software that acts as 

communication enabler and, potentially, as a device control system and device data processing hub. 

The field gateway’s scope includes the field gateway itself and all devices that are attached to it. As the name implies, field 

gateways act outside dedicated data processing facilities and are usually location bound.  

They are potentially subject to physical intrusion, and might have limited operational redundancy.  

A field gateway is different from a mere traffic router in that it plays an active role in managing access and information 

flow, meaning it is an application-addressed entity and network connection or session terminal. NAT devices or firewalls, in 
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contrast, do not qualify as field gateways because they are not explicit connection or session terminals, but rather route 

(or block) connections or sessions made through them.  

A field gateway has two distinct surface areas. One faces the devices that are attached to it and represents an inside of a 

zone, and the other faces external parties (such as a cloud gateway) and is the edge of the zone.  

Cloud gateway. A cloud gateway is a system that enables remote communication from and to devices or field gateways, 

potentially residing at several different sites, connecting across public network space.  

The cloud gateway handles both inbound and outbound communication between devices and a cloud-based backend 

system, or a federation of such systems.  

In the context discussed here, “cloud” is meant to refer to a dedicated data processing system that is not bound to the 

same site as the attached devices or field gateways, and where operational measures prevent targeted physical access, but 

is not necessarily a “public cloud” infrastructure.  

A cloud gateway may potentially be mapped into a network virtualization overlay to insulate the cloud gateway and all of 

its attached devices or field gateways from any other network traffic.  

The cloud gateway itself is neither a device control system nor a processing or storage facility for device data; those 

facilities interface with the cloud gateway. The cloud gateway’s scope includes the cloud gateway itself along with all field 

gateways and devices directly or indirectly attached to it.  

A cloud gateway has two distinct surface areas. One faces the devices and field gateways that are attached to it, and the 

other faces backend services and potentially external parties.  

Service. In the context of this document a service is defined as any software component or module that is interfacing with 

devices through a field gateway or cloud gateway for data collection and analysis, as well as for command and control 

interactions. Services are mediators. They act under their own identity toward gateways and other subsystems, store and 

analyze data, autonomously issue commands to devices based on data insights or schedules, and expose information and 

control capabilities to authorized end users. 

Solution. A solution for a particular IoT scenario is a composition of system building blocks, including all user-contributed 

rules, extensions, and code. It includes all data storage and analysis capabilities specific to the known scope of the 

solution.  

The solution interacts and integrates with other systems that exist as shared enterprise resources such as CRM or ERP 

systems or other line-of-business solutions. A CRM system used as a job ticketing system for support technicians that is 

specifically introduced for a predictive maintenance solution would be in the solution scope, but very often CRM systems 

are already in place for customer support. In these cases, the new solution will integrate with the existing support job 

ticketing system rather than introducing a new one. 

4.2. References  
To learn more about Azure IoT, visit our website.  

The following Microsoft products support Azure IoT scenarios: 

Azure IoT Suite 

http://www.microsoft.com/en-us/server-cloud/internet-of-things.aspx
http://www.microsoft.com/en-us/server-cloud/internet-of-things/azure-iot-suite.aspx


 

 

Azure IoT Reference Architecture    31 

Azure IoT Hub 

Azure Storage 

Azure Data Lake 

Azure DocumentDB 

Azure SQL Database 

Azure HDInsight 

Azure Stream Analytics 

Azure Event Hubs 

Azure Web Apps 

Azure Mobile Apps 

Azure Logic Apps 

Azure Notification Hubs 

Azure Machine Learning 

Azure Machine Learning Studio 

Power BI  

Azure Active Directory 

Azure Key Vault 

For more references and information supporting this document, take a look at the following:  

 

Service assisted communication 

 

http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-

connected-devices.aspx 

 

TCP http://tools.ietf.org/html/rfc793 

  

UDP http://tools.ietf.org/html/rfc768 

 

AMQP http://www.amqp.org/ 

 

AMQP Core 

 

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html 

MQTT http://mqtt.org/ 
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html 

 

CoAP 

 

http://en.wikipedia.org/wiki/Constrained_Application_Protocol 

OPC Foundation https://opcfoundation.org/ 

http://en.wikipedia.org/wiki/OPC_Foundation 

  

WebSockets  http://en.wikipedia.org/wiki/WebSockets  

 

 

https://azure.microsoft.com/en-us/services/iot-hub/
http://azure.microsoft.com/en-us/documentation/services/storage/
https://azure.microsoft.com/en-us/solutions/data-lake/
https://azure.microsoft.com/en-us/solutions/data-lake/
https://azure.microsoft.com/en-us/services/documentdb/
http://azure.microsoft.com/en-us/services/sql-database/
http://azure.microsoft.com/en-us/services/hdinsight/
http://azure.microsoft.com/en-us/services/stream-analytics/
http://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/app-service/web/
https://azure.microsoft.com/en-us/services/app-service/web/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/logic/
https://azure.microsoft.com/en-us/services/app-service/logic/
http://azure.microsoft.com/en-us/services/notification-hubs/
http://azure.microsoft.com/en-us/services/machine-learning/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-what-is-ml-studio/
https://powerbi.microsoft.com/en-us/
https://azure.microsoft.com/en-us/services/active-directory/
https://azure.microsoft.com/en-us/services/key-vault/
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://www.amqp.org/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://mqtt.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://opcfoundation.org/
http://en.wikipedia.org/wiki/OPC_Foundation
http://en.wikipedia.org/wiki/WebSockets


 

 

Azure IoT Reference Architecture    32 

TLS 

 

http://tools.ietf.org/html/rfc5246 

http://tools.ietf.org/html/rfc4279 

 

Azure VPN 

 

http://azure.microsoft.com/en-us/services/virtual-network/ 

 

ExpressRoute 

 

http://azure.microsoft.com/en-us/services/expressroute/ 

 

Azure API applications 

 

https://azure.microsoft.com/en-us/documentation/articles/app-service-api-apps-why-best-

platform/ 

 

Azure Search 

 

https://azure.microsoft.com/en-us/documentation/articles/search-what-is-azure-search/ 

 

Bing Maps 

 

http://msdn.microsoft.com/en-us/library/ff428643.aspx 

 

Service Fabric 

 

http://azure.microsoft.com/en-us/campaigns/service-fabric/ 

 

Akka 

 

http://akka.io/  

 

Akka.Net 

 

http://getakka.net/  

 

Azure Batch 

 

https://azure.microsoft.com/en-us/services/batch/ 

MapReduce 

 

http://en.wikipedia.org/wiki/MapReduce  

 

Pig 

 

http://en.wikipedia.org/wiki/Pig_(programming_tool)  

 

Apache Storm 

 

http://storm.incubator.apache.org/ 

 

Apache Spark 

 

http://spark.apache.org/  

Apache HBase 

 

http://hbase.apache.org/ 

Apache Hadoop 

 

http://hadoop.apache.org/  

 

Apache Hive 

 

http://hive.apache.org/ 

Apache Mahout 

 

http://mahout.apache.org/  

 

CAP Theorem https://en.wikipedia.org/wiki/CAP_theorem  

 

Azure Business Continuity 

Technical Guidance 

 

https://msdn.microsoft.com/library/azure/hh873027.aspx  

 

HADR for Azure applications 

 

https://msdn.microsoft.com/library/azure/dn251004.aspx 

 

Securing your Internet of Things 

from the ground up 

http://download.microsoft.com/download/8/C/4/8C4DEF9B-041B-47F3-AD7F-

52F391B1D0AB/Securing_your_Internet_of_Things_from_the_ground_up_white_paper_EN_US.pdf  
 

 

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4279
http://azure.microsoft.com/en-us/services/virtual-network/
http://azure.microsoft.com/en-us/services/expressroute/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-apps-why-best-platform/
https://azure.microsoft.com/en-us/documentation/articles/app-service-api-apps-why-best-platform/
https://azure.microsoft.com/en-us/documentation/articles/search-what-is-azure-search/
http://msdn.microsoft.com/en-us/library/ff428643.aspx
http://azure.microsoft.com/en-us/campaigns/service-fabric/
http://akka.io/
http://getakka.net/
https://azure.microsoft.com/en-us/services/batch/
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://storm.incubator.apache.org/
http://spark.apache.org/
http://hadoop.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
https://en.wikipedia.org/wiki/CAP_theorem
https://msdn.microsoft.com/library/azure/hh873027.aspx
https://msdn.microsoft.com/library/azure/dn251004.aspx
http://download.microsoft.com/download/8/C/4/8C4DEF9B-041B-47F3-AD7F-52F391B1D0AB/Securing_your_Internet_of_Things_from_the_ground_up_white_paper_EN_US.pdf
http://download.microsoft.com/download/8/C/4/8C4DEF9B-041B-47F3-AD7F-52F391B1D0AB/Securing_your_Internet_of_Things_from_the_ground_up_white_paper_EN_US.pdf

